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Experimental chaos from non-autonomous
electronic circuits

By M. LAKSHMANAN AND K. MURALI

Centre for Nonlinear Dynamics, Department of Physics, Bharathidasan University,
Tiruchirapalli 620 024, India

Nonlinear non-autonomous electronic circuits are veritable tools to study chaotic
dynamics. Considering piecewise-linear non-autonomous circuits containing only one
nonlinear element, namely a nonlinear resistor, we show that even lower dimensional
circuits can exhibit all the fascinating aspects of chaos. In particular, we study the
chaotic behaviour of the simplest dissipative second-order circuit of Murali, Lak-
shmanan and Chua and the extremely simple first-order circuit with a ‘jump-rule’
proposed by Tang, Mees and Chua.

1. Introduction

The study of nonlinear electronic circuits is a convenient framework to undertake
systematic exploration of fundamental mechanisms underlying the onset of chaos.
Over the past two decades, piecewise-linear circuits, either of autonomous or non-
autonomous nature, have become simple yet powerful models for studying various
bifurcation structures and chaos phenomenon in nonlinear dynamics. A variety of
nonlinear electronic circuits which exhibits chaos has been reported in the literature
in recent times, both in autonomous and non-autonomous cases (Azzouz et al. 1983;
Chua 1992; Linsay 1981; Madan 1993; Matsumoto et al. 1986; Murali & Lakshmanan
1991, 1993; Murali et al. 1994a,b). In the present contribution, we concentrate our
attention on only two important, but very simple, non-autonomous electronic cir-
cuits and critically examine their chaotic dynamics through experimental results,
numerical simulations and analytical discussions.

Higher-order nonlinear non-autonomous circuits are already well studied in the
literature (Madan 1993; Murali & Lakshmanan 1991, 1993). For example, the driven
Chua’s circuit, which is fourth order in nature, has been investigated as a black box
exhibiting a rich variety of bifurcation and chaos phenomena, ranging from period
doubling route to chaos to quasi-periodicity, intermittency, period adding sequences
and so on, as well as a model system for studying control and synchronization (Murali
& Lakshmanan 1991, 1993). A simplified third-order version also exhibits similar
behaviour both experimentally and numerically (Murali 1994).

In this paper we wish to point out that even a much simpler second-order dis-
sipative nonlinear circuit, consisting Chua’s diode as the only nonlinear element,
suggested by Murali et al. (1994a,b), can exhibit a rich variety of bifurcation and
chaos phenomena. The details are given in § 2. Further, interestingly even a first-order
circuit equation, but with a ‘jump-rule’ and a piecewise-linear (V-I) characteristic
curve leading to an one-dimensional shift map, can exhibit chaos, as shown by Tang
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34 M. Lakshmanan and K. Murali
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Figure 1. (a) Circuit realization of the simple non-autonomous MLC circuit. Here N is the Chua’s
diode. (b) Experimental circuit model with the current sensing resistor Rs. Here R = 1340 Q,
L =18 mH, C = 10 nf, Ry = 20 2 and frequency of the signal source is 8890 Hz.

et al. (1983). The construction and behaviour of this circuit is given in §3. Finally,
a summary of the results is given in §4.

2. Murali-Lakshmanan—Chua (MLC) circuit

One need not consider higher-order non-autonomous nonlinear circuits to observe
chaos but it is sufficient if it is of second-order in nature (Chua et al. 1987). In
the following we present the details of such a simple and novel second-order non-
autonomous chaotic circuit of figure 1 whose only nonlinear element is a Chua’s
diode. Linsay (1981) had demonstrated chaos experimentally by driving a series cir-
cuit made up of a linear resistor, a linear inductor and a varactor diode with a
sinusoidal voltage source. However, even though this physical circuit contains only
three circuit elements, the circuit model used for computer simulation in (Azzouz et
al. 1983) contains six circuit elements and the associated nonlinearities are exponen-
tial functions, thereby making any mathematical analysis intractable. However, the
present circuit of figure 1 proposed by Murali et al. (1994a,b) is much simpler from
a circuit theoretic point of view due to the presence of only one nonlinear resistor,
namely, the Chua’s diode, which is conceptually a much simpler circuit element than
a nonlinear capacitor.

(a) Experimental realization

The circuit realization of the simple non-autonomous MLC circuit is shown in
figure la. It contains a capacitor, an inductor, a linear resistor, an external periodic
forcing and only one nonlinear element, namely, the Chua’s diode (N) (Cruz et al.
1992; Kennedy 1992). To measure the inductor current iy, in our experiments, we
insert a small current sensing resistor Ry as shown in figure 1b. In the corresponding
computer simulations, this resistor is simply added to the resistor R. By applying
Kirchhoff’s laws to this circuit, the governing equations for the voltage v across
the capacitor C and the current i), through the inductor L are represented by the
following set of two first-order non-autonomous differential equations:

C@ =i — g(v), L(}LL = —Riy, — Ryiy, — v + fsin(£2t), (1)
dt dt
where g(-) is a piecewise-linear function defined by Chua et al. (1987)
g(vr) = Gyog + 0.5(Gy — Gy)[|vr + By| — Jvr — Byl], (2)

which is the mathematical representation of the characteristic curve of Chua’s diode

(see figure 2). The slopes of the inner and outer regions are G, and G,,, while B,

Phil. Trans. R. Soc. Lond. A (1995)
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Experimental chaos from electronic circuits 35
ig=8(Vr)
A
Gy
: o 5 -
-B, ! Ve
G, \
Gy

Figure 2. Characteristic curve of the Chua’s diode.

indicates break points. In equation (1) f is the amplitude and {2 is the angular
frequency of the external periodic force. The parameters of the circuit elements are
fixed as C = 10nF, L = 18 mH, R = 1340 Q, R; = 20  and the frequency (= £2/2m)
of the external forcing source is 8890 Hz.

(b) Stability analysis
The actual values of G,, G}, and B, of equation (2) are fixed as —0.76 ms, —0.41 ms
and 1.0 V respectively (Kennedy 1992). Rescaling equation (1) as v = zB,, i, =
GyB,, G =1/R,w = 2C/G and t = 7C/G and then redefining 7 as ¢ the following
set of normalized equations are obtained:

t=y—g(z), y=-PBy—vPy—Pr+Fsinlwt) (° =d/dt), (3)
where 3 = (C/LG?), v = GRs, and F = (ff3/B,). Obviously g(z) = bz + 0.5(a —
b)[|z + 1| — |z — 1J], or

br+a—-0b, x2>=1,
g9(x) = { az, | < 1, (4)
br -a+0b, x<-—1.
Here a = G,/G, b = G,/G. Now the dynamics of equation (3) depends on the
parameters v, 3, a, b, w and F. The experimental circuit parameters used in the
previous section are then rescaled as 8 = 1, v = 0.015, a = —1.02, b = —0.55 and
w = 0.75.

One can easily establish that a unique equilibrium (zg,yo) for equation (3) exists
in each of the following three subsets,

Dy = {(m,y)\m > 1} Pt = (_kla_kQ)a
Dy = {(z,y)l|z| < 1}/O = (0,0), (5)
D_y ={(z,y)lz < —1}[P~ = (k1, k2),
where k; = o(a — b)/(8 + ob), ka = B(b—a)/(8 + ob) and 0 = B(1 4+ v). We
also note that the parameters k; and k, for the present case can be re-expressed as
ki=1+v)(a—0b)/(1+ (1+v)b) and ke = (b—a)/(1+ (1 + v)b).
In each of the regions D, Dy and D_;, equation (3) is linear when F = 0. It is
then easy to see that the stability determining eigenvalues for the equilibrium point

Phil. Trans. R. Soc. Lond. A (1995)
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36 M. Lakshmanan and K. Murali
O € Dy are calculated from the matrix

—a 1
B, R—
a hyperbolic fixed point (unstable). Similarly, the matrix

Ag=A(B,0,a) = { :' as A =0.1904 and X, = —0.1854,

AO:A(ﬁ)Uab):[ ’ ! :|

-8 -0

associated with the regions D; and D_; has a pair of complex-conjugate eigenvalues
(A1, A2 = A}) with negative real part, like \; = —0.2325+1(0.623) and Ay = —0.2325—
1(0.623), which indicates that P and P~ are stable spiral fixed points (Matsumoto
et al. 1986). Naturally these fixed points can be observed depending upon the initial
condition z(0) and y(0) of equation (3) when F' = 0. As the forcing signal is included
(F > 0) these fixed points give rise to limit cycles through Hopf bifurcation and
as F' is increased further the system exhibits period doubling bifurcations from the
period-1 limit cycle to chaos as discussed below.

(¢) Ezplicit analytical solutions

Actually equation (3) can be explicitly integrated in terms of elementary functions
in each of the three regions Dy, D; and D_; and matched across the boundaries to
obtain the full solution as shown below.

It is quite easy to see that in each one of the regions Dy, D1, D_1, equation (3) can
be represented as a single second-order inhomogeneous linear differential equation
for the variable y(t) as .

i+ (B4 Bv+wy+ (B+pbr+ Bu)y = A+ pF sinwt + Fw coswt, (6)

where w=a, A=0 Iinregion Dy, (7)

uw=>b, A==p(a—0b) inregion Dy. (8)
The general solution of equation (6) can be written as
y(t) = Cp L™ + Cf 1e™*' + Ey + Easinwt + E3 coswt, 9)

where Cj 4 and C§ . are integration constants in the appropriate regions Do, Dy
and

ar = 5(-A+ V(A% —4B)), ay=3(-A-/(A?-4B)),
E; =0 inregion Dy and E; = A/B in region Dy,
Ey = (Fw?(A — p) + pFB)/(A%w? + (B — w?)?), (10)
E3 = Fw(B — w? — nA)/(A%W? + (B — w?)?),
A=p+pv+up, B=p+pubv+pu
Knowing y(t), z(t) can be obtained from (3) as
2(t) = (1/8){~9 — Py(1 +v) + Fsinwt},
= (1/8){—y — oy + Fsinwt},
= (1/ﬁ){—C’é’iea1t(a1 +0)— Cg’ie’”t(ag + o)
—(coswt)(EBow + F30) + (sinwt)(F — Fyo + Fsw) — Eyo}. (11)

Phil. Trans. R. Soc. Lond. A (1995)
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Experimental chaos from electronic circuits 37

Table 1. Summary of bifurcation phenomena of equation (3)

amplitude (F) description of attractor figure 3b
0< F <0071  period-1 limit cycle 1)
0.071 < F < 0.089  period-2 limit cycle (i1)
0.089 < F < 0.093  period-4 limit cycle (iii)
0.093 < F <0.19 chaos (iv,v)
0.19 < F £ 0.3425 period-3 window (vi)
0.3425 < F < 0.499 chaos (not included here)
0.499 < F' £ 0.625  period-3 window (not included here)
0.625 < F period-1 boundary (vii)

Thus if we start with the initial condition in Dy the arbitrary constants C§ and C3 in
(9) get fixed. Then z(t) evolves as given in (11) up to either ¢t = T3, when z(7T}) = 1
and @(Ty) > 0 or t = T}, when z(T]) = —1 and &(T}) < 0. Knowing whether Ty > T}
or T} < T] we can determine the next region of interest (D) and the arbitrary
constants of the solutions of that region can be fixed by matching the solutions.
This procedure can be continued for each successive crossing. In this way explicit
solutions can be obtained in each of the regions Dy, Dy. However, it is clear that
sensitive dependence on initial conditions is introduced in each of these crossings at
appropriate parameter regimes during the inversion procedure of finding T4, T7, T,
Ty,. .. , etc., from the solutions. The time instances T; or T;s can only be computed
numerically.

(d) Ezxperimental and numerical studies

In order to study the dynamics of this circuit the amplitude f of the forcing signal
is used as the bifurcation parameter. By increasing the amplitude from zero upwards,
the circuit of figure 1 is found to exhibit experimentally a sequence of bifurcations.
Starting from a direct-current equilibrium, the solution bifurcates through a Hopf
bifurcation to limit cycle, and then by period-doubling sequences to Chua’s one-
band attractor, double-band attractor, periodic windows, boundary crisis, etc., as
illustrated in figure 3a as the forcing strength f varies. Also by using the standard
4th-order Runge-Kutta integration routine we have carried out numerical analysis of
(3) with the rescaled circuit parameters of figure 1 as 8 = 1.0, v = 0.015, a = —1.02,
b= —0.55 and w = 0.75 (Murali et al. 1994a, b), with F' as the control parameter. The
results are summarized in table 1 and some of them are also exhibited in figure 3b.

(e) Chua’s diode with single break-point and spiral Chua’s attractor

Figure 3b(iv) shows the appearance of spiral Chua’s attractor for F' = 0.1. The
invariance of equation (3) under the reflection (z,y) — (—x, —y) implies that there
is another spiral-type chaotic attractor located symmetrically with respect to the
origin, depending upon the initial conditions. The symmetry, in turn, stems from
the symmetry of the function g(-) in equation (4). This observation suggests that
one attractor should still be present even if one replaces the 3-segment function
g(+) of the Chua’s diode with the 2-segment function in figure 4. This conjecture
is confirmed in figure 5, where the spiral type chaotic attractor is observed with a

Phil. Trans. R. Soc. Lond. A (1995)
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(b)
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Figure 3. For description see opposite.
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(a) (b)
27 vi)
y -
-2 T 1
2...
(vii)
y -
2 ' 2

X

Figure 3. Experimental results and corresponding results of numerical simulations. (a) Pro-
jection of the trajectories on to the v—vs (= Rsir) plane. (b) Projection of trajectories on
to the z-y plane of equation (3) through numerical simulations. Here f. is the calculated
value of the forcing amplitude using the relation f. = FBy/f. (i) Period-1 limit cycle: (a)
f = 0.0365Vims, (b) F' = 0.065 (fo = 0.046Vims); (i) Period-2 limit cycle: (a) f = 0.0549Vims,
(b) F = 0.08 (fc = 0.0565Vims); (iil) Period-4 limit cycle: (a) f = 0.064Vims, (b) F' = 0.091
(fe = 0.06435Vims); (iv) One-band chaos: (a) f = 0.0723Vims, (b) F = 0.1 (fe = 0.0707Vims);
(v) Double-band chaos: (a) f = 0.107Vims, (b) F = 0.15 (fc = 0.106Vims); (vi) Period-3 window:
(a) f = 0.145Vims, (b) F = 0.2 (fc = 0.1414Vins); (vii) Period-1 boundary: (a) f = 0.488Vims;
( ) = 0 7 (fc — 0 495‘/rm~=)

piecewise-linear resistor having only one break-point (see also Sparrow 1981). The
mathematical representation of the characteristic curve of the figure 4 can be given

Phil. Trans. R. Soc. Lond. A (1995)
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ir=8g(W)
A
B
Q 2 > Vr
G,
Gy

Figure 4. Modified resistor characteristic with a single break point of the Chua’s diode.

-0.2 (a) —0.6§ (b)
é 3
0.6 -0.8
y ] y ]
-1.0 -1.0
- ] 4 ] TT T T T Trr[prrrrrroroT [rrrrrorrr1] _1 2 :—r_l"!_l’W_r_l_ﬁ’]—r_!—l"r‘l—l_l_Y*r"_ﬁ‘l—r_ﬁ“rﬂ—f—'
0.2 0.6 1.0 1.4 0.5 0.7 0.9 1.1
X X

Figure 5. (a) Spiral Chua’s attractor obtained from equation (3) and equation (12) for F' = 0.1
with characteristic curve of figure 4. (b) Poincaré map of (a).

(Chua et al. 1987) as

g(x) = 0.5(b— a)[|z — By| — |Bp| + 0.5(a + b)z, (12)
or
br+a—-0b, x2=B,,
g9(z) = — 0 (13)
ax, z < Bp.
Here B, = 1.0, a = —1.02 and b = —0.55. However, the experimental realization of

the nonlinear resistor with 2-segment characteristic curve is difficult but this can be
attained by adding a bias battery in series with the sinusoidal source (Matsumoto
et al. 1986). Also one can obtain explicit solutions of various regions of operation of
equation (3) along with equation (13) as in the 3-segment case.

3. Loss of synchronization and chaos: Tang—Mees—Chua model

In some sense an even more simpler circuit than the MLC circuit, but with a
non-monotonic V-1 characteristic requiring a ‘jump-rule’ associated with a first-
order differential equation, is the piecewise-linear circuit suggested by Tang, Mees

Phil. Trans. R. Soc. Lond. A (1995)
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(a) ) (c)
d() ALy Ad®
B -
L Iylo i
—Cy=1 ! C ‘ ...... l ...... [ ...... I .......
N .
| O =>
I, D C P

Figure 6. (a) The circuit model of the triggered astable oscillator. (b) The idealized Ir—Vr
characteristic of the nonlinear resistor. (¢) Narrow periodic trigger pulses.

and Chua (TMC model) (Tang et al. 1983). The jump rule of the circuit provides
the extra dynamics to make the system chaotic and maps it exactly onto a one-
dimensional shift map. The TMC system is essentially an astable multivibrator as in
figure 6a, whose nonlinear resistor has an idealized piecewise-linear V—I characteristic
(figure 6b). The circuit of figure 6a is triggered by small synchronization trigger pulses
of figure 6¢. Then by very straightforward arguments one can easily see that the loss
of synchronization between the unforced oscillator and the forcing signal ultimately
leads to chaos.

The operation of the circuit of figure 6a proceeds as follows. The nonlinear resistor
of figure 6a charges capacitor Cy with current I during the time b/I, until it reaches
point C(Vg = b). An instantaneous transition from C' to A is assumed to occur at this
point and thereafter resistor R begins to discharge Cy with a current equal to —Ip/«
during the interval ba/I;. When it reaches B(Vg = 0), during this time another
instantaneous transition from B to D is assumed to occur and R starts charging Cy
again.

The assumption that an instantaneous jump from C to A (and from B to D) occurs
is called the jump postulate or phenomenon in circuit theory (Chua et al. 1987), and
often represents a very realistic model of experimentally observed phenomena. Each
boundary point where the jump takes place is called an impasse point (Chua et
al. 1987), and comprehensive theory has been developed to show how an impasse
point occurs naturally as a result of idealizations resulting from setting some small
but essential circuit parameters (called parasitics) to zero (Chua et al. 1987). The
presence of the triggering signal d(¢) may trigger the jump from C to A before the
capacitor voltage has reached the threshold b. This occurs if a pulse arrives when the
capacitor voltage is rising between the values b — ¢ and b. Otherwise, the triggering
pulses have no effect.

If the period p of the signal is slightly smaller than the period g of the free-running
multivibrator, all pulses d(¢) will trigger the jump and thus the forced multivibrator
output is synchronized with d(t). This normal functioning of the oscillator is shown
in figure 7. The behaviour of this circuit model can be described by the equation,

Io, if £(t) > 0 and x(t) +d(t) < b,
or if z(t) +d(t) < 0,

—Ip/a, if &(t) <0 and z(t) +d(t) >0,
or if z(t) +d(t) = b,

i(t*) = (14)

Phil. Trans. R. Soc. Lond. A (1995)
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x(f) + d(®)
A
b | |
> |
© \ slope —Iy/o.

slope [,

Figure 7. A possible output waveform of figure 6a. Slope changes when x + d reaches b from
below or 0 from above. Period of = + d is locked on to the period of d. Here z corresponds to
the capacitor voltage.

x+d
A
b |
b—ct-faNc---f-- b N SN - - N
O<—>E<—> > T a—— -<—>|<—>E >t
f 1o, P-4 2p-q)  3w-q) o X
e > Sy
| q ) q ' q q |
Y T T e

Figure 8. A possible triggered waveform.

where x corresponds to the capacitor voltage and ¢+ denotes lim, ,o(t + €). Now let
us assume that the driving signal’s period p is slightly longer than the free running
period g. Suppose also that p — ¢ is less than c/I, the time for z, the capacitor
voltage, to rise from its lowest triggerable value to its maximum. Let ¢,, be the rise
time of the nth successfully triggered wave segment. That is when a trigger pulse
causes the nth slope change, t,, is the time from the trigger pulse back to when the
signal was last zero. With these assumptions, a possible waveform of x + d is plotted
in figure 8. If p— ¢ is small, the circuit will not usually be triggered again on the cycle
immediately after a successful triggering instead, it will free-run with the triggering
pulse shifting a distance p — ¢ on each cycle. From figure 8, it is easy to see that the
next successful triggering occurs when

(p_Q)k P atrt+(b_c)/107 (15)

where £ is the smallest integer that satisfies (15) and (b — ¢)/I, is the time needed
for the capacitor C' to be charged from zero to the triggering threshold voltage b — c.
Using the notation of figure 8, we get

tn,+1 = (p - Q)k — aty, (16)

and this recurrence relation describes the system fully. Also from the figure, we can
easily check that

aty +(b—c)/Ip = (k= 1)(p — q) + (ot + (b —¢)/Io) mod(p — q).  (17)
Eliminating & between (16) and (17) and setting, 7, = t,, — (b — ¢)/Iy, we obtain

Tnt1 = (p — q) — (a7, + ) mod(p — q), (18)

where (3 is a constant which we may take to lie in [0, p — g] without loss of generality,

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 9. The effect of f(7). 7o is mapped to f(70). The line f(7) = 7 reflects f(70) into 7-axis.
This reflected point becomes 71 and the process continues. The mapping and reflecting proceed
along the arrows.

because of the modulo(p — ¢) operation. Also, if (p — ¢) = 1, we finally deduce the
equivalent one-dimensional shift map

Tna1 = f(7n) =1 — (a7, + §) mod 1. (19)

To each time evolution of the circuit there corresponds the sequence 7, which is
obtained by iterating the function f(7,) on the initial value 75. One can analyse
these iterations rigorously for different cases a < 1, « = 1 and @ > 1 of (19) and
the brief description of the results of these cases are as follows. When o < 1, the
system (19) exhibits fixed point solution (corresponding to period-1 oscillation of the
original system). When « = 1, period-2 oscillations occur and when o > 1 the map
(19) exhibits chaotic behaviour. For the case of o > 1, all the fixed points of f(7,)
are now unstable; moreover iterates f™ of f consists of straight line segments with
slope (—a)™ and so fixed points of all periods are unstable. So there can be no stable
periodic solutions (see figure 9). Also, the mapping is always locally expansive: nearby
points get pulled further and further apart, until eventually they find themselves on
opposite sides of a discontinuity of f, corresponding to being in different switching
cycles of the original system.

The exponential divergence and sensitive dependence on initial conditions can
be rigorously established for this map, by considering an a-nary expansion for the
variable xy and by defining z, = [t,/(p — ¢)] mod 1: that is

(e o]
Ty = E Toja?, where 0 < zp; < a.
7j=1

It follows from (16) and the fact « is an integer, that z,41 = (—az,)mod 1, which
implies

o0 oo
Ty =1- Zxo,(k—i—l)a—ka Ty = Zwo,(k+2)a“k> cee
k=1 k=1

(e o] oo

ZTon = Zxo,(k+2n)a_ka Tont1 = 1 — Zwo,(k+2n+1)a_k~

k=1 k=1
Thus there is a one-to-one correspondence between the a-nary expansion of z; and
the sequence {z,}. The above equations exhibit that at each iterate, the expansion
loses its first digit and is complemented modulo a. Thus for example in the case
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Figure 10. The experimental circuit of the triggered astable oscillator (Tang et al. 1983).

a = 2 (which is similar to the Bernoulli shift map (McCauley 1993)), the map can
be represented as

0.0101... — 0.1010... (drop first digit),
— 0.0101... (subtract from 1).

To examine the history of any point, one writes down its a-nary expansion and
complement the odd numbered digits modulo «. The digits then give, in order, the
kneading intervals visited. Since two nearby initial points will have a-nary strings
that differ in an arbitrary manner, beyond a finite number of slots, all informations
about the ‘nearness’ of the points will be lost after a finite number of applications
of the map, resulting in random numbers. Thus one sees in a transparent way the
onset of chaos.

Finally, to illustrate and confirm the chaotic behaviour predicted above a simple
experimental circuit which simulates, almost exactly, the idealized Ig—VR character-
istic in figure 6b has been built and studied in Tang et al. (1983). The experimental
circuit of TMC model is shown in figure 10. A standard integrated circuit module
NE555 performs the switching between charging and discharging. The two transis-
tors act as current sources. When the output of NE555 is high, @, overcomes Q-
and charges Cy. Otherwise @)1 is OFF and Cj is discharged by Q2. The other NE555
generates the triggering signal which is added to the oscillator via an operational
amplifier. A typical power spectrum plot depicting the broad spectrum of the re-
sulting triangular waveform v. from the circuit is shown in figure 11, and thereby
confirming the chaotic behaviour of the circuit of figure 6a.

Finally, it is worth mentioning that Li & Yorke (1978) have discussed rigorous
evidence for chaos (ergodic and expanding) from one-dimensional maps which in-
clude the TMC map of equation (19). Also recently, Saito & Oikawa (1993) have
proposed a simple piecewise-linear non-autonomous chaotic circuit and proved its
chaos generation in the sense of discussions by Li & Yorke (1978).
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Figure 11. The power spectrum of a typical waveform of v. (Tang et al. 1983).

4. Conclusion

We have given convincing evidence that simple low-dimensional piecewise-linear
non-autonomous circuits with nonlinear resistors can be ideal models to study chaotic
dynamics. As typical examples we examined the chaotic dynamics of the second-order
dissipative MLC circuit and the first-order TMC circuit model with a ‘jump-rule’.
The results show clearly how such simple nonlinear circuits can bring out all the
fascinating aspects associated with chaos.

This work has been supported by the Department of Science and Technology, Government of
India in the form of a research project.
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igure 3. Experimental results and corresponding results of numerical simulations. (a) Pro-
ction of the trajectories on to the v-wvs (= Rsiy) plane. (b) Projection of trajectories on
o the z—y plane of equation (3) through numerical simulations. Here f. is the calculated
Jue of the forcing amplitude using the relation f. = FB,/3. (i) Period-1 limit cycle: (a)
= 0.0365Vims, (b) F = 0.065 (fe = 0.046Vims); (i1) Period-2 limit cycle: (a) f = 0.0549Vims,
) FF' = 0.08 (fe = 0.0565Vims); (iii) Period-4 limit cycle: (a) f = 0.064Vims, (b) F = 0.091
. = 0.06435V,ms): (iv) One-band chaos: (@) f = 0.0723Vims, (b) F = 0.1 (fo = 0.0707Vims);
') Double-band chaos: (a) f = 0.107Vims. (b) F' = 0.15 (fe = 0.106Vinms); (vi) Period-3 window:
) f = 0.145Vins, (b) F = 0.2 (fe = 0.1414V,,s); (vii) Period-1 boundary: (a) f = 0.488Vims;
) F=0.7 (fo = 0.495Vims).
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